

Flight Rules Category (FRC) Prediction Using CPC 6-10 Day Forecasts

Ryan Lynch, Michael Ward

Dr. Steven M. Lazarus, Prof. Michael E. Splitt,

Dr. Nezamoddin N. Kachouie, Robbie Breininger

Outline

- Introduction & Relevant Work
- Datasets & Methods
- Results & Modeling
- Conclusion & Discussion

https://blueskypit.com/2019/02/07/flying-in-fog/

Why is weather important to aviation?

- Weather causes **70%** of delays
- In 2019, delays cost as much as
 \$33 billion (FAA)
- Burning fuel releases an additional 7.1 million metric tons of CO₂ each year (Committee, U., 2008).

These types of weather contributed to delays at Newark, LaGuardia and JFK in winter versus summer in 2013.

https://www.faa.gov/nextgen/programs/weather/faq/

Defining Flight Rules Categories (FRCs)

Flight Rules Category (FRC)	Ceiling (ft AGL)	Visibility
Visual (VFR)	Greater than 3,000	Greater than 5 miles
Marginal Visual (MVFR)	1,000 to 3,000	3 to 5 miles
Instrument (IFR)	500 to 1,000	1 to 3 miles
Low Instrument (LIFR)	Less than 500	Less than 1 mile

- FRC is determined by **Ceiling** and **Visibility** (C&V)
- Low C&V \rightarrow IFR & LIFR
 - Further separation, reduced efficiency
 - SFO arrival rate 54 vs 36 per hour (Stevens, 2019)

Safety

- 27% of weather-related aviation accidents and 71% of fatalities are due to poor C&V (Fultz & Walker, 2016)
- "VFR into IMC" (good into bad)

https://safeblog.org/2018/09/08/vfr-into-imc-execute-your-parachute-option/

Using the Second-Generation GEFS Reforecasts to Predict Ceiling, Visibility, and Aviation Flight Category (Verlinden & Bright 2017)

- Used the Global Ensemble Forecast System to predict ceiling and visibility out to 30 hours
- Yielded skillful predictions
- Short-term forecasting has been done

Predicting the Predominant Winter Flight Category in Central Ohio Using ENSO Indices (Frederick, 2012)

- Used El Niño Southern Oscillation indices to predict winter FRC.
- Found possible links
- Seasonal or long-term forecasting has been done

Using Climate Forecasts for Drought Management (Steinemann, 2006)

- Used Climate Prediction Center (CPC) forecasts for precipitation for drought management in Georgia
- Benefits of using their forecast precipitation index ranges from \$30-\$350 million dollars per year
- Demonstrates utility of CPC forecasts

Using the Second-Generation GEFS Reforecasts to Predict Ceiling, Visibility, and Aviation Flight Category (Verlinden & Bright 2017)

 Yielded skillful predictions of C&V out to 30 h Predicting the Predominant Winter Flight Category in Central Ohio Using ENSO Indices (Frederick, 2012)

• Found links between ENSO indices and winter FRC rates

Using Climate Forecasts for Drought Management (Steinemann, 2006)

Applied Climate Prediction
 Center precipitation outlooks
 to drought management

Summary of Literature Review

- Climate parameters have been used to predict FRCs
- Current work is mainly focused on short-term (up to 48 h) or seasonal forecasts.
- Intermediate term forecasting has not yet been done for FRCs
- Utility of CPC forecasts

Datasets & Methods

Goal: Can we use CPC 6-10 day outlooks to predict observed FRCs?

Climate Prediction Center (CPC):

- 6-10 day temp. & precip. outlooks
- Probabilities & Categories:

below-normal, normal, above-normal

Meteorological Terminal Air Reports (METARs):

- Observed C&V (5-min & hourly)
 - Derived FRCs

Datasets

CPC 6-10 Day Outlooks

Climate Prediction Center (CPC):

• 6-10 day outlooks for temperature and precipitation

Meteorological Terminal Air Reports (METARs):

 Observed Flight Rules Categories (FRCs) 5 min. & hourly reports

How does the CPC determine the "normal"

- 30 years of daily temperature records
 - Groups each 5-day span of recorded temperatures throughout the 30 years into three categories

Same 5-day window, different years

CPC 6-10 Day Outlooks

 Using this Climatology, the CPC forecasts the probabilities of Temp. being below-normal, normal, and above-normal then generates an outlook for the most likely

Choosing Airports

Airports in red are among the 10 busiest in the nation

Data Issues

CPC

- Incorrect dates (early data)
- Missing data
 - \circ Random
 - Weekends

METAR

- Missing data (5-min)
 - \circ Random
 - Inconsistent counts
- Dallas & Denver replaced
 - Oklahoma City
 - Colorado Springs

Combining 5 minute and Hourly data

Results & Modeling

KIAH 30-year Observed FRC Climatology (monthly)

KSEA 30-year Observed FRC Climatology (monthly)

Combining FRC Rates and Climatology with CPC Outlooks

- Compare CPC forecasts to METAR FRC rates
- 9 combinations of CPC categories
- Account for seasonal variability
- Compare to climatology
- Complement statistical modeling

CPC Precipitation Outlook

KIAH Observed IFR Rates vs. CPC Categorical Outlooks

KEWR Observed IFR Rates vs. CPC Categorical Outlooks

Modeling

CPC – Predictors

- Terciles
 - Probabilities: BLW, NRM, ABV
 - Categories: (1, 2, and 3)
- Combined metric

0
 1*BLW + 2*NRM + 3*ABV
 100

- Month
- Interactions

Which type of model is best suited for our data?

Beta Regression

How will we determine which combination of predictors is best?

• Performance on training data (AIC & Pseudo-R²)

METAR - Predictands

- Observed FRCs
 - 5-day averaged rates for each FRC

Sample of Modeling Results

- 30 variations of the model for each station, for each FRC
- Sample of the best models for 5 stations (IFR rates)
- Most of the best models had month and interactions as their predictors

Airport	AIC	Pseudo-R ²	Predictors	MSE (Test)
ANC	-37597.0	0.252	Month, Combined metrics, Interactions	0.0022
IAH	-31244.6	0.306	Month, Combined metrics, Interactions	0.0051
МСО	-36991.5	0.172	Month, CPC %s (log), Interactions	0.0168
ORD	-30179.8	0.204	Month, Combined metrics, Interactions	0.0010
SEA	-26069.0	0.106	Month, CPC %s (log), Interactions	0.0022

Table 2: Top performing beta regression models (AIC based) for IFR rates at each selected station. (MSE was only calculated for January 2022)

Conclusion & Discussion

- Encouraging results
 - CPC outlooks can be useful in predicting FRC rates
 - Categorical bar plots
 - Modeling based on probabilities

https://stormwater.wef.org/2019/03/passing-planes-pull-added-precipitation-fromclouds-finds-new-study/

Future Work

- Final model can be improved with additional predictors and methods
 - Soil moisture/drought index
 - CPC outlooks from multiple stations
 - Predict C&V rather than FRC
 - Inclusion of other climate factors
- Test the model on a larger independent dataset

References

- Andrew J. Fultz & Walker S. Ashley (2016) Fatal weather-related general aviation accidents in the United States, Physical Geography, 37:5, 291-312, DOI: 10.1080/02723646.2016.1211854
- Committee, U., 2008. Your Flight Has Been Delayed Again Your Flight Has Been Delayed Again United States Joint Economic *Committee*. [online] Jec.senate.gov. Available at: https:/s/www.jec.senate.gov/public/index.cfm/democrats/2008/5/your-flight-has-been-delayed-again_1539.
- FAA, 2019: Cost of Delay Estimates. [Available online at <u>https://www.jec.senate.gov/public/_cache/files/47e8d8a7-661d-</u> 4e6bae72-0f1831dd1207/yourflighthasbeendelayed0.pdf]
- Frederick, M. A. (2012). Predicting the Predominant Winter Flight Category in Central Ohio Using ENSO Indices. OhioLINK ETD: https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?clear=10&p10_accession_num=osu1354301630
- Steinemann, A. C. (2006). Using Climate Forecasts for Drought Management. *Journal of Applied Meteorology and Climatology*, 45(10), 1353–1361. https://doi.org/10.1175/jam2401.1
- Stevens, S. E. (2019). Trends in Instrument Flight Rules (IFR) Conditions at Major Airports in the United States. Journal of Applied Meteorology and Climatology, 58(3), 615–620. <u>https://doi.org/10.1175/jamc-d-18-0301.1</u>
- Verlinden, K. L., & Bright, D. R. (2017). Using the Second-Generation GEFS Reforecasts to Predict Ceiling, Visibility, and Aviation Flight Category. *Weather and Forecasting*, *32*(5), 1765–1780. https://doi.org/10.1175/waf-d-16-0211.1

Questions?

Thank you!

Beautiful Seattle, Washington https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.portseattle.org%2Fsea-tac%2Fflight-status&psig=AOvVaw1u2tM2M62NdvU2zoO9_JL&ust=1654705433843000&source=images&cd=vfe&ved=0CA0QjhxqFwoTCNDEh5_gm_gCFQAAAAAdAAAAABAD

Using the Second-Generation GEFS Reforecasts to Predict Ceiling, Visibility, and Aviation Flight Category (Verlinden & Bright 2017)

- Postprocessing of NOAA Global Ensemble Forecast System (GEFS) Reforecasts
 - Yielded skillful predictions discerning IFR and VFR flight conditions out to 30 h for the majority of airports

Predicting the Predominant Winter Flight Category in Central Ohio Using ENSO Indices (Frederick, 2012)

- Can El Niño Southern Oscillation (ENSO) indices be used to predict the predominant winter flight category?
- Tested El Niño/La Niña winter conditions against FRCs over 30 years at 3 airports (two in Ohio, one in Florida).
 - Found strong correlations, especially at Tampa Airport
- Forecasting on a seasonal timescale

Using Climate Forecasts for Drought Management (Steinemann, 2006)

- Using Climate Prediction Center (CPC) seasonal outlooks for precipitation to aid drought managers
- Benefits of using the forecasts ranged from \$30 million to \$350 million per year to the state of Georgia
- In drought seasons, 88% of forecasts would have invoked correct response
- Application of CPC outlooks on a seasonal timescale

Data: CPC 6-10 day Outlooks

- Three Categories: above, normal, and below (Based on 30 year terciles)
 - Probabilities that the forecast falls into each category

Histogram of AllCPCData\$TABV

AllCPCData\$TABV

Histogram of AllCPCData\$TBLW

Histogram of AllCPCData\$Pnew

Histogram of AllCPCData\$PABV

Histogram of AllCPCData\$PBLW

Sample of Modeling Results

- 30 variations of the model for each station, for each FRC
- Sample of the best models for 5 stations (IFR rates)
- Most of the best models had month and interactions as their predictors

Airport	AIC	Pseudo R ²	Predictors	Link	Link.phi	MSE
						(Test)
ANC	-37597.0	0.252	Month, Combined metrics, Interactions	probit	sqrt	0.0022
IAH	-31244.6	0.306	Month, Combined metrics, Interactions	N/A	log	0.0051
MCO	-36991.5	0.172	Month, CPC %s (log), Interactions	probit	sqrt	0.0168
ORD	-30179.8	0.204	Month, Combined metrics, Interactions	N/A	log	0.0010
SEA	-26069.0	0.106	Month, CPC %s (log), Interactions	probit	sqrt	0.0022

Table 2: Top performing beta regression models (AIC based) for IFR rates at each selected station. (MSE was only calculated for January 2022)